C U SHAH UNIVERSITY WADHWAN CITY

Section – I

Branch: M Tech (CE)

Subject Code: 5TE02RTS1

Semester: II

Subject Name: Real Time System

Q-1 Answer the following.		[7]	
1.	With a suitable example explain the difference between the traditional notion of and real-time.	of time [2]	
2.	What is the difference between a performance constraint and a behavioral con in a real-time system?	straint [2]	
3.	Explain the important differences between hard, firm and soft real- time system	ns.[2]	
4.	Explain priority inversion in the context of real-time scheduling?	[1]	
Q-2 Answ	er the following.	[14]	
1.	Explain scheduling point of a task scheduling algorithm? How the scheduling	points	
	are determined in (i) clock-driven, (ii) event-driven, (iii) hybrid schedulers?	[7]	
2.	What is understood by jitter associated with a periodic task? Mention techniqu	les by	
	which jitter can be overcome.	[7]	
OR			
1.	Explain event driven scheduling in detail.	[7]	
2.	List and explain applications of Real time system	[7]	
Q-3 Answer the following		[14]	
1.	Explain RMA in detail	[5]	
2.	Explain semaphore and mutex in real time systems	[5]	
3.	3. It is difficult to achieve software fault tolerance as compared to hardware fault		
	tolerance. Why?	[4]	
OR			
1.	1. List and explain different types of timing constraints that can occur in a real-time		
	system?	[7]	
2.	What is it required to synchronize the clocks in a distributed real- time system	?	
	Compare the advantages and disadvantages of centralized and the distributed clock		
	synchronization.	[7]	

Section – II

Q-4 State whether the following statements are TRUE or FALSE. Justify your answer. [7]

- 1. RMA is optimal for scheduling access of several hard real-time periodic tasks to a certain shared critical resource.
- 2. Unless a suitable resource-sharing protocol is used, even the lowest priority task in a real-time system may suffer from unbounded priority inversions.

C U SHAH UNIVERSITY WADHWAN CITY

- 3. Scheduling a set of real-time tasks for access to a set of non-preemptable resources using PIP results in unbounded priority inversions for tasks.
- 4. A task can undergo priority inversion for some duration under PCP even if it does not require any resource
- 5. Task allocation is done statically in the focused addressing and bidding algorithm in distributed real-time systems.
- 6. Dynamic task arrivals can efficiently be handled using the focused addressing and bidding algorithm in multiprocessor-based real- time systems.
- 7. The communication overhead incurred due to Buddy algorithms is less compared to focused addressing and bidding algorithms in multiprocessor real-time task scheduling.

Q-5 Answer the following.

- 1. List and explain the important features that are required to be supported by a RTOS.
- 2. What is the difference between synchronous and asynchronous I/O? Which one is better suited for use in real-time applications?

OR

[14]

[7]

[7]

[14]

[7]

- What are the shortcomings of Windows NT for developing a hard real-time application?
 [7]
- 2. What are the drawbacks in using Unix kernel for developing real- time applications? [7]

Q-6 Answer the following

- 1. Explain the differences between a system call and a function call? What problems may arise if a system call is made indistinguishable from a function call? [7]
- 2. Explain the requirements of a real-time file system? How is it compared to traditional file systems? [7]

OR

- 1. Distinguish traffic shaping and policing.
- 2. Define the concepts of additive, multiplicative and concave constraints that are normally used in QoS routing schemes. [7]